
DESCRIPTION OF NORMALIZATION

Normalization is the process of organizing data in a database. This includes creating

tables and establishing relationships between those tables according to rules designed

both to protect the data and to make the database more flexible by eliminating two

factors: redundancy and inconsistent dependency.

Redundant data wastes disk space and creates maintenance problems. If data that

exists in more than one place must be changed, the data must be changed in exactly the

same way in all locations. A customer address change is much easier to implement if

that data is stored only in the Customers table and nowhere else in the database.

What is an "inconsistent dependency"? While it is intuitive for a user to look in the

Customers table for the address of a particular customer, it may not make sense to look

there for the salary of the employee who calls on that customer. The employee's salary

is related to, or dependent on, the employee and thus should be moved to the

Employees table. Inconsistent dependencies can make data difficult to access; the path

to find the data may be missing or broken.

There are a few rules for database normalization. Each rule is called a "normal form." If

the first rule is observed, the database is said to be in "first normal form." If the first

three rules are observed, the database is considered to be in "third normal form."

Although other levels of normalization are possible, third normal form is considered the

highest level necessary for most applications.

As with many formal rules and specifications, real world scenarios do not always allow

for perfect compliance. In general, normalization requires additional tables and some

customers find this cumbersome. If you decide to violate one of the first three rules of

normalization, make sure that your application anticipates any problems that could

occur, such as redundant data and inconsistent dependencies.

NOTE: The following descriptions include examples.

FIRST NORMAL FORM

 Eliminate repeating groups in individual tables.

 Create a separate table for each set of related data.

 Identify each set of related data with a primary key.

Do not use multiple fields in a single table to store similar data. For example, to track an

inventory item that may come from two possible sources, an inventory record may

contain fields for Vendor Code 1 and Vendor Code 2.

But what happens when you add a third vendor? Adding a field is not the answer; it

requires program and table modifications and does not smoothly accommodate a

dynamic number of vendors. Instead, place all vendor information in a separate table

called Vendors, then link inventory to vendors with an item number key, or vendors to

inventory with a vendor code key.

SECOND NORMAL FORM

 Create separate tables for sets of values that apply to multiple records.

 Relate these tables with a foreign key.

Records should not depend on anything other than a table's primary key (a compound

key, if necessary). For example, consider a customer's address in an accounting system.

The address is needed by the Customers table, but also by the Orders, Shipping,

Invoices, Accounts Receivable, and Collections tables. Instead of storing the customer's

address as a separate entry in each of these tables, store it in one place, either in the

Customers table or in a separate Addresses table.

THIRD NORMAL FORM

 Eliminate fields that do not depend on the key.

Values in a record that are not part of that record's key do not belong in the table. In

general, any time the contents of a group of fields may apply to more than a single

record in the table, consider placing those fields in a separate table.

For example, in an Employee Recruitment table, a candidate's university name and

address may be included. But you need a complete list of universities for group mailings.

If university information is stored in the Candidates table, there is no way to list

universities with no current candidates. Create a separate Universities table and link it

to the Candidates table with a university code key.

EXCEPTION: Adhering to the third normal form, while theoretically desirable, is not

always practical. If you have a Customers table and you want to eliminate all possible

inter-field dependencies, you must create separate tables for cities, ZIP codes, sales

representatives, customer classes, and any other factor that may be duplicated in

multiple records. In theory, normalization is worth pursuing; however, many small tables

may degrade performance or exceed open file and memory capacities.

It may be more feasible to apply third normal form only to data that changes frequently.

If some dependent fields remain, design your application to require the user to verify all

related fields when any one is changed.

OTHER NORMALIZATION FORMS

Fourth normal form, also called Boyce Codd Normal Form (BCNF), and fifth normal form

do exist, but are rarely considered in practical design. Disregarding these rules may

result in less than perfect database design, but should not affect functionality.

 Examples of Normalized Tables

 Normalization Examples:

 Unnormalized table:

 Student# Advisor Adv-Room Class1 Class2 Class3

 1022 Jones 412 101-07 143-01 159-02

 4123 Smith 216 201-01 211-02 214-01

First Normal Form: NO REPEATING GROUPS

Tables should have only two dimensions. Since one student has several classes,

these classes should be listed in a separate table. Fields Class1, Class2, &

Class3 in the above record are indications of design trouble.

Spreadsheets often use the third dimension, but tables should not. Another way

to look at this problem: with a one-to-many relationship, do not put the one side

and the many side in the same table. Instead, create another table in first normal

form by eliminating the repeating group (Class#), as shown below:

 Student# Advisor Adv-Room Class#

 1022 Jones 412 101-07

 1022 Jones 412 143-01

 1022 Jones 412 159-02

 4123 Smith 216 201-01

 4123 Smith 216 211-02

 4123 Smith 216 214-01

Second Normal Form: ELIMINATE REDUNDANT DATA

Note the multiple Class# values for each Student# value in the above table.

Class# is not functionally dependent on Student# (primary key), so this

relationship is not in second normal form.

The following two tables demonstrate second normal form:

 Students: Student# Advisor Adv-Room

 1022 Jones 412

 4123 Smith 216

 Registration: Student# Class#

 1022 101-07

 1022 143-01

 1022 159-02

 4123 201-01

 4123 211-02

 4123 214-01

Third Normal Form: ELIMINATE DATA NOT DEPENDENT ON KEY

In the last example, Adv-Room (the advisor's office number) is functionally

dependent on the Advisor attribute. The solution is to move that attribute from

the Students table to the Faculty table, as shown below:

 Students: Student# Advisor

 1022 Jones

 4123 Smith

 Faculty: Name Room Dept

 Jones 412 42

 Smith 216 42

